If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x+x^2=231
We move all terms to the left:
10x+x^2-(231)=0
a = 1; b = 10; c = -231;
Δ = b2-4ac
Δ = 102-4·1·(-231)
Δ = 1024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1024}=32$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-32}{2*1}=\frac{-42}{2} =-21 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+32}{2*1}=\frac{22}{2} =11 $
| 17+z=-z-17 | | -5j-4=7j+8 | | 7x+6=-20-(-4x) | | −8=1.3m−2.1m | | 7x-13+2x=3x-13 | | 35(t+18)=-3(2-t) | | 5x-8=130 | | 19x+5+180=15x+5 | | -8x-3=-75 | | -7y+8=-4+5y | | -15-6b=-(b-5) | | j2+40j=0 | | 19p-18=20+3p+10 | | (2x+5)=73 | | 6x+18=8x+12−2x+6 | | 10+2.50h=5.50+h | | -21-15x=219 | | -3y-8=25 | | 3x-15=30+9 | | 12t—4(t—5)=52 | | 40+47x=180 | | 8x-6+2x=2x+12 | | 1.50x-4=25 | | 3r^2-3r+14=0 | | -x+6-7=-5(x+4) | | -3y-8=-25 | | k15=-15 | | 6x-23=55-7x | | 6x+-4=x5 | | U=10+6u | | 1/4x=1/2(x+4) | | -9-3u=1-5u+8 |